Panel Builder System Integrator

Festo softAI 400

March 1, 2019

Whether its grabbing, holding or turning, touching, typing or pressing - in everyday life, we use our hands as a matter of course for the most diverse tasks. In that regard, the human hand, with its unique combination of power, dexterity and fine motor skills, is a true miracle tool of nature. What could be more natural than equipping robots in collaborative workspaces with a gripper that is modelled after this model of nature, that solves various tasks by learning through artificial intelligence? Festo shows the pneumatic robot hand BionicSoftHand at Hanover Fair 2019. Combined with the BionicSoftArm, a pneumatic lightweight robot, the Future Concepts are suitable for human-robot collaboration.

The BionicSoftHand is pneumatically operated, so that it can interact safely and directly with people. Unlike the human hand, the BionicSoftHand has no bones. Its fingers consist of flexible bellows structures with air chambers. The bellows are enclosed in the fingers by a special 3D textile coat knitted from both, elastic and high-strength threads. With the help of the textile, it is possible to determine exactly where the structure expands and generates power, and where it is prevented from expanding.This makes it light, flexible, adaptable and sensitive, yet capable of exerting strong forces.

 

Artificial Intelligence

The learning methods of machines are comparable to those of humans: either in a positive or a negative way - they require a feedback following their actions in order to classify and learn from them. BionicSoftHand uses the method of reinforcement learning.
This means: Instead of imitating a specific action, the hand is merely given a goal. It uses the trial and error method, to achieve its goal. Based on received feedback, it gradually optimises its actions until the task is finally solved successfully.

Specifically, the BionicSoftHand should rotate a 12-sided cube so that a previously defined side points upwards at the end. The necessary movement strategy is taught in a virtual environment with the aid of a digital twin, which is created with the help of data from a depth-sensing camera via computer vision and the algorithms of artificial intelligence.

Proportional piezo valves for precise control

In order to keep the effort of tubing the BionicSoftHand as low as possible, the developers have specially designed a small, digitally controlled valve terminal, which is mounted directly on the hand. This means that the tubes for controlling the gripper fingers do not have to be pulled through the entire robot arm. Thus, the BionicSoftHand can be quickly and easily connected and operated with only one tube each for supply air and exhaust air. With the proportional piezo valves used, the movements of the fingers can be precisely controlled.

BionicSoftArm: One robot arm, many possible variations

The strict separation between the manual work of the factory worker and the automated actions of the robot is being increasingly set aside. Their work ranges are overlapping and merging into a collaborative working space. In this way, human and machine will be able to simultaneously work together on the same workpiece or component in the future – without having to be shielded from each other for safety reasons.

The BionicSoftArm is a compact further development of Festo's BionicMotionRobot, whose range of applications has been significantly expanded. This is made possible by its modular design: It can be combined with up to seven pneumatic bellows segments and rotary drives. This guarantees maximum flexibility in terms of reach and mobility, thus enables it to work around obstacles even in the tightest of spaces if necessary. At the same time, it is completely flexible and can work safely with people. Direct human-robot collaboration is possible with the BionicSoftArm, as well as its use in classic SCARA applications, such as pick-and-place tasks.

Flexible application possibilities

The modular robot arm can be used for a wide variety of applications, depending on the design and mounted gripper. Thanks to its flexible kinematics, the BionicSoftArm can interact directly and safely with humans. At the same time, the kinematics make it easier for it to adapt to different tasks at various locations in production environments: the elimination of costly safety devices such as cages and light barriers shortens conversion times and thus enables flexible use – completely in accordance with adaptive and economical production

BionicFinWave: Underwater robot with unique fin drive

Nature teaches us impressively, how optimal drive systems for certain swimming movements should look like. To move forward, the marine planarian and sepia create a continuous wave with their fins, which advances along their entire length. For the BionicFinWave, the bionics team was inspired by this undulating fin movement. The undulation pushes the water backwards, creating a forward thrust. This principle allows the BionicFinWave to maneuver forwards or backwards through an acrylic tube system.

Its two side fins are completely cast out of silicone and do not require struts or other supporting elements. The two fins are attached to the left and right of nine small lever arms, which in turn are powered by two servo motors. Two adjacent crankshafts transmit the force to the levers so that the two fins can be moved individually to generate different shaft patterns. They are particularly suitable for slow and precise locomotion and whirl up less water than, for example, a screw drive. A cardan joint is located between each lever segment to ensure that the crankshafts are flexible. For this purpose, the crankshafts including the joints and the connecting rod are made of plastic in one piece using the 3D printing process.

Intelligent interaction of a wide variety of components

The remaining elements in the BionicFinWave’s body are also 3D-printed, which enables its complex geometries in the first place. With their cavities, they act as flotation units. At the same time, the entire control and regulation technology are watertight, safely installed and synchronised in a very tight space.

New impulses and approaches for the process industry

With the bionic technology carrier, our Bionic Learning Network once again provides an impulse for future work with autonomous robots and new drivetrain technologies in liquid media. It would be conceivable to further develop concepts such as the BionicFinWave for tasks such as inspections, measurement series or data collections - for example for water and wastewater technology or other areas of the process industry.

Source

Latest Articles

  • Prev
The phrase “up-time” is an oft-repeated phrase for IT professionals, reflecting the fact that a key ...
The International Society of Automation (ISA) recently served as the partner for an independent ...
A local manufacturer intended to complete the setup and installation of a high-speed ...
For three decades, Endress+Hauser Canada has been building strong relationships with customers ...
  I think many of us right now are caught at a point where we are either looking back at ...
Electromate has been recognized as the 28th Best Workplace in Canada. This list, and related ...
If you are interested or in the midst of switching from making cars, beverages, apparel or ...
During these weeks, with the COVID-19 outbreaks, it has been possible to observe how certain ...
Brock Solutions is pleased to announce the recent award by the Region of Peel of the Clarkson and ...

How Omron's Robotic Solutions Increased a Chocolate Company's Production By 40%

OmronAt BOLCi Bolu Chocolate, a Turkish manufacturer of elegant truffles and other delicacies, the opportunity arose for some improvements to its production system. With over 300 employees and a 20,000-square-meter factory, BOLCi has a product list of over 800 different items and produces and average of 200 tons of chocolate items each month.

BOLÇİ’s guarantee to its customers is that its chocolate is never sullied by human touch during production or packaging. In order to maintain this immaculate status and reach increasingly high production targets, the chocolate manufacturer turned to Omron and system integrator Innovas to devise an automated solution for its packaging line.

Read More

David Willick of Schneider Electric talks Optimizing Mining Operations, Integrated Technology and Sustainability in Mining

Schneider ElectricBy Blake Marchand

Based out of Toronto, David Willick, VP & Regional Segment Leader for Mining, Metals and Minerals, Schneider Electric, is a mining industry veteran. Being with Schneider for the last three years, he is really starting to see the mining community focus in on producing sustainable products by utilizing new technologies and data analytics platforms.

“I’ve been in the industry 30-years and I’ve never been more excited than I am today,” he said, and being with a company like Schneider that has really taken a leading role from a sustainability perspective makes it that much more interesting.

Read More

Coming Soon: The new EPLAN Pro Panel, Version 2.8, Virtual control cabinet engineering – fully matured

The new EPLAN Pro Panel, Version 2.8 is making its first big appearance at the SPS IPC Drives. The software for virtual 3D control cabinet engineering is characterised by its expanded flexibility, surprising users with a brand new 4K-capable user interface. It’s also causing decision-makers to sit up and take notice: during live, joint presentations in Nuremberg, EPLAN and Rittal will be introducing a whole series of innovations in the context of control cabinet engineering.

These include complementary software solutions for engineering and preplanning operations, innovative system technology for housings, power distribution and climate-control systems, automation technologies, and digital assistance systems for integrated automation of manufacturing processes. EPLAN and Rittal are thereby positioning themselves as solutions providers offering integrated solutions for optimising processes in control cabinet engineering: combined machine/hardware and software solutions, product-accompanying data and comprehensive on-site process integration services for customers.

Read More: < ...

Product News

  • Prev
Hammond Power Solutions Inc. (HPS), North America's leading manufacturer of dry-type transformers ...
  Hammond Power Solutions Inc. (HPS) has announced the availability of a line extension of ...
The new multifunctional MACX-TR timer relays from Phoenix Contact now make simple time control ...
The PTFIX product family from Phoenix Contact has now been extended to include a nominal cross ...
For the very first time, manual deburring processes can be automated with the robot deburring tool ...
At the show, an M-710iC/45M robot used the 3DV/1600 vision sensor to quickly find and snap boxes of ...
Industrial producers can now improve their network resiliency by using primary and backup adapters ...
Festo is meeting the need of the North American automotive sector for a powerful yet flexible valve ...
AMT series encoders from CUI Devices are advanced capacitive encoders with a variety of uses. AMT ...
Seifert SoliTherm Thermoelectric Coolers from AutomationDirect use the Peltier Effect for ...
Kerrwil Publications Great Place to Work. Certified December 2019 - December 2020

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2020 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil