Digital Twins: Creating Smarter Products On Time and On Budget

Rockwell Automation

rcokwell-banner (3).jpg

June 4, 2018

To keep pace in the machine design industry, companies require a delicate balance of innovation and an ability to get their products to market on time and on budget.

Typically, issues with new designs will become apparent during commissioning, once physical prototypes shed light on oversights and errors.

In fact, design issues found during commissioning are often acknowledged as simply the cost of doing business, given that new designs are crucial to the success of many.

In the machine design industry, however, some companies are investing more resources in up-front design, drastically reducing the amount of issues they’ll encounter in the later stages of development.

This technique is a time-tested practice in the aerospace and automotive fields, and reviews of several design strategies have shown that even a 5-10% increase up-front can reduce cost overruns by 50-100%.

Where does the added investment go? A key technology that’s gaining traction in the machine design industry is the use of digital twins – a virtual, model-based representation of the physical system.

Digital twins can help account for the dynamics of the entire system, in one unified modeling environment, helping provide specific information about the interactions between components.

With this information available, engineers are given a new tool to spot design issues, especially when their products involve new, untested designs.

When working on a new product in the conceptual phase, digital twins can play a huge role in giving engineers new abilities to work with designs.

Because digital twins are system-wide models that provide simulation results quickly, engineers can test what-if scenarios with ease, and explore trade-offs by simply changing design parameters and seeing results in minutes.

If, for example, an engineer was sizing a motor for a new quick return machine, their digital twin could provide a complete picture of the dynamic loads experienced by the motor, reducing the risk of component failure after delivery.

Outside of a safer, more effective conceptual development phase, there are a wide range of benefits that engineers can implement by using digital twin technology:

  • Virtual Commissioning: Long before the first build, engineers can predict the steady-state and transient loads that the actuators will face during their duty cycles. To ensure the right performance, they can test their PLC hardware against the digital twin using common automation software, or test their PLC code directly before it is downloaded to hardware, all resulting in accurately tuned controls across a system.
  • Online Diagnostics: Running the digital twin in parallel with the real machine can provide valuable insight into where a problem might arise as the machine’s response drifts from the model as it ages.
  • Virtual Sensors: Since the dynamic response of the digital twin is built on rigorous physical laws, certain internal calculated properties may be sufficient to use as inputs to the control system, either to temporarily replace a faulty sensor until it can be fixed, or eliminate the use of that sensor altogether.
  • Predictive Maintenance: With a digital twin, engineers can assess the impact of dynamic loading on bearings, gears, and motors, caused by changes in the duty cycle. Putting a digital twin through a proposed duty cycle can help to determine the loads on these components and the impact on the component life.
  • Sales Tool: Outside of the engineering department, the digital twin can be used in the selling process to qualify customer specifications and provide accurate information that is specialized to each customer. This information can help validate the performance and operation of a machine given different payloads or operating conditions, without needing a full consultation by the engineer.

Like any industry that faces stiff competition, the world of machine design is growing its ability to create advanced machines that perform without fail.

As new products push the limits of current engineering practices, new tools are required to assist engineers when their intuitions and current skillsets are being strained.

A digital twin is one of these new tools, and as their adoption continues, we can expect to see new products that push the limits of what is possible in the automation industry.

For more information HERE

https://www.rockwellautomation.com/

 

Related Articles


Changing Scene


Sponsored Content
The Easy Way to the Industrial IoT

The way to the Industrial IoT does not have to be complicated. Whether access to valuable data is required or new, data-driven services are to be generated, Weidmuller enables its customers to go from data to value the easy way. Weidmuller’s comprehensive and cutting-edge IIoT portfolio applies to greenfield and brownfield applications. Weidmuller offers components and solutions from data acquisition, data pre-processing, data communication and data analysis.

Visit Weidmuller’s Industrial IoT Portfolio.


ADVANCED Motion Controls Takes Servo Drives to New Heights (and Depths) with FlexPro Extended Environment Product Line

Advanced Motion Controls is proud to announce the addition of six new CANopen servo drives with Extended Environment capabilities to their FlexPro line. These new drives join AMC’s existing EtherCAT Extended Environment FlexPro drives, making the FlexPro line the go-to solution for motion control applications in harsh environments.

Many motion control applications take place in conditions that are less than ideal, such as extreme temperatures, high and low pressures, shocks and vibrations, and contamination. Electronics, including servo drives, can malfunction or sustain permanent damage in these conditions.

Read More


Service Wire Co. Announces New Titles for Key Executives

Bruce Kesler and Mark Gatewood have been given new titles and responsibilities for Service Wire Co.

Bruce Kesler has assumed the role of Senior Director – Business Development. Bruce will be responsible for Service Wire’s largest strategic accounts and our growing Strategic Accounts Team.

Mark Gatewood has been promoted to the role of Vice President – Sales & Marketing. In this role, Gatewood will lead the efforts of Service Wire Company’s entire sales and marketing organization in all market verticals.

Read More


Tri-Mach Announces the Purchase of an Additional 45,000 sq ft. Facility

Tri-Mach Elmira Facility

Recently, Tri-Mach Inc. was thrilled to announce the addition of a new 45,000 sq ft. facility. Located at 285 Union St., Elmira, ON, this facility expands Tri-Mach’s capabilities, allowing them to better serve the growing needs of their customers.

Positioning for growth, this additional facility will allow Tri-Mach to continue taking on large-scale projects, enhance product performance testing, and provide equipment storage for their customers. The building will also be the new home to their Skilled Trades Centre of Excellence.

Read More


JMP Parent Company, CONVERGIX Acquires AGR Automation, Expanding Global Reach

Convergix Automation Solutions has completed the acquisition of AGR Automation (“AGR”), a UK-based provider of custom, high-performance automation design and systems integration primarily to the life sciences industry.

Following Convergix’s acquisitions of JMP Solutions in August 2021 and Classic Design in February 2022, AGR marks the third investment in Crestview’s strategy to build Convergix into a diversified automation solutions provider targeting the global $500+ billion market, with a particular focus on the $70 billion global systems integration and connectivity segments. Financial terms of the transaction were not disclosed.

Read More


Latest Articles

  • Implementing Functional Safety Requirements

    Implementing Functional Safety Requirements

    The Safety Functional Requirements Specification (SFRS; sometimes referred to as SRS or Safety Requirements Specification) is the plan for the safety controls on a machine and is the second step of the safety lifecycle. The SFRS document serves as a framework for the safety control system design, is informed by prior work done in the… Read More…

  • From Endress+Hauser, 24/7 Digital, Plant-Wide Health Monitoring for Rockwell Systems Optimizes Workflows and Processes

    From Endress+Hauser, 24/7 Digital, Plant-Wide Health Monitoring for Rockwell Systems Optimizes Workflows and Processes

    Endress+Hauser’s Asset Health Monitoring Solution–Rockwell Edition, now available for installation, provides operators with a centralized, digital overview of plant-wide device health to avoid unscheduled shutdowns and accelerate troubleshooting. It not only presents early visibility of problematic devices but distinguishes itself by adding likely causes and remedies to such a report so problems can be fixed… Read More…