Capital Asset Optimization: Harnessing IoT Data & Predictive Maintenance

PBSI 3 2 PredictiveMaint 400.jpeg

January 21, 2019

By Ron McKay

For any business dealing with capital-intensive assets, maintaining machines and equipment is a continuous battle.

From damaged equipment and undetected malfunctions to total machine failure that leads to unexpected (and costly) downtime, knowing how to future-proof your assets is a challenge. If your strategy is to only fix when something breaks, you’re in a reactive mode, which often costs more and leads to extended, unplanned downtime, ultimately impacting your bottom line.

Instead, what if you could know ahead of time when an asset will fail, and you could monitor your assets’ health over time to determine the ideal frequency for maintenance?

It’s possible – with predictive maintenance.

Predictive Maintenance – Your Greatest Asset

Predictive maintenance has emerged as a game-changing solution for asset management. According to a report by TechSci Research, the global predictive maintenance market is projected to grow at a compound annual growth rate of 31% between 2017 and 20221. Today, we see companies across various industries, such as energy and utilities, manufacturing, transportation and healthcare, adopt predictive maintenance solutions.

This solution involves using data to identify warning signs, predict maintenance requirements on equipment and preemptively service that equipment at optimal times before problems occur.

By connecting your assets with IoT sensors and analyzing the real-time data with advanced analytics, such as machine learning, the insights give you a full picture of asset health, and help you anticipate maintenance so as to avoid unplanned downtime.

In many ways, a company’s greatest asset could be the advanced technology that keeps their capital-intensive machines and equipment running at an optimal level.

Here’s why:

A Deloitte study2 found that predictive maintenance solutions can:
• Increase equipment uptime by 10 to 20%
• Increase productivity by 25%
• Reduce breakdowns by 70%
• Reduce maintenance costs by 5 to 10%
• Reduce maintenance planning time by 20 to 50%

Implementing predictive capabilities will represent a significant competitive advantage for organizations with capital-intensive assets – and put you at the leading edge of where technology is headed.

IoT-Enabled Predictive Maintenance for Wind Farms

Today, we’re starting to see the increased adoption and exponential growth of IoT that was forecasted. However, unlocking the potential IoT has to offer for predictive maintenance doesn’t have to be difficult. It starts by building on the infrastructure you have in place today and incorporating the right technology so that you can use your data, deliver better insights and take action.

Take a wind farm as an example. If the wind farm has 50+ wind turbines and hundreds of sensors firing, getting to the data that matters to make informed decisions is essential to improving the environment. Any unplanned maintenance or downtime will be both costly and inefficient. In fact, the ability to identify underperforming wind turbines is critical to managing turbine operating costs and enabling comprehensive and targeted blade inspections.

With an IoT-enabled predictive maintenance solution, a wind farm can proactively schedule turbine service and avoid potential failures, while optimizing performance and efficiencies across the entire farm.

It starts by:

1. Ingesting and organizing data from a variety of systems and sensors, such as wind turbine telemetry and local weather stations.

2. Analyzing the data for issues and anomalies using predictive models. This includes training the predictive model with historical data to identify what normal turbine behaviour looks like to get a performance baseline, then comparing each individual turbine’s performance to it.

3. Visualizing key data and findings for further analysis and decision-making on a dashboard. This includes real-time insight into what turbines require maintenance, why and when.

The result? Implementing predictive capabilities into a wind farm’s operating model means the business can focus their technicians on the observations that really matter, understand root causes of problems better, and dedicate their time to the blades that require the most maintenance.

Microsoft Azure is making predictive solutions and machine learning more attainable for businesses. The solution described above is built on the Microsoft Azure platform to create a predictive maintenance engine that uses Azure Data Factory to coordinate data, Azure Databricks for predictive modelling, Azure Data Lake Store as the central data repository, and Power BI for data visualization, to name a few of the Microsoft technologies deployed.

How To Get Started on Your Predictive Maintenance Project

You can get started quickly on successfully deploying a predictive maintenance solution to achieve high asset utilization and increase ROI for your capital-intensive assets.

1. Understand the business opportunity and the outcome you’d like to achieve through predictive maintenance.

2. Start with a discovery phase to assess the data you have available and prioritize requirements to ensure that the solution meets the unique needs of your business.

3. Get the right stakeholders engaged to drive alignment and agree upon the set of measures and KPIs needed.

T4G has assisted a variety of companies with the planning and implementation of custom predictive maintenance solutions. And for wind farm operators, we have a proven solution framework ready to be configured, that will deliver the results you need in a fraction of the time.

Source

Related Articles


Changing Scene


Sponsored Content
The Easy Way to the Industrial IoT

The way to the Industrial IoT does not have to be complicated. Whether access to valuable data is required or new, data-driven services are to be generated, Weidmuller enables its customers to go from data to value the easy way. Weidmuller’s comprehensive and cutting-edge IIoT portfolio applies to greenfield and brownfield applications. Weidmuller offers components and solutions from data acquisition, data pre-processing, data communication and data analysis.

Visit Weidmuller’s Industrial IoT Portfolio.


ADVANCED Motion Controls Takes Servo Drives to New Heights (and Depths) with FlexPro Extended Environment Product Line

Advanced Motion Controls is proud to announce the addition of six new CANopen servo drives with Extended Environment capabilities to their FlexPro line. These new drives join AMC’s existing EtherCAT Extended Environment FlexPro drives, making the FlexPro line the go-to solution for motion control applications in harsh environments.

Many motion control applications take place in conditions that are less than ideal, such as extreme temperatures, high and low pressures, shocks and vibrations, and contamination. Electronics, including servo drives, can malfunction or sustain permanent damage in these conditions.

Read More


Service Wire Co. Announces New Titles for Key Executives

Bruce Kesler and Mark Gatewood have been given new titles and responsibilities for Service Wire Co.

Bruce Kesler has assumed the role of Senior Director – Business Development. Bruce will be responsible for Service Wire’s largest strategic accounts and our growing Strategic Accounts Team.

Mark Gatewood has been promoted to the role of Vice President – Sales & Marketing. In this role, Gatewood will lead the efforts of Service Wire Company’s entire sales and marketing organization in all market verticals.

Read More


Tri-Mach Announces the Purchase of an Additional 45,000 sq ft. Facility

Tri-Mach Elmira Facility

Recently, Tri-Mach Inc. was thrilled to announce the addition of a new 45,000 sq ft. facility. Located at 285 Union St., Elmira, ON, this facility expands Tri-Mach’s capabilities, allowing them to better serve the growing needs of their customers.

Positioning for growth, this additional facility will allow Tri-Mach to continue taking on large-scale projects, enhance product performance testing, and provide equipment storage for their customers. The building will also be the new home to their Skilled Trades Centre of Excellence.

Read More


JMP Parent Company, CONVERGIX Acquires AGR Automation, Expanding Global Reach

Convergix Automation Solutions has completed the acquisition of AGR Automation (“AGR”), a UK-based provider of custom, high-performance automation design and systems integration primarily to the life sciences industry.

Following Convergix’s acquisitions of JMP Solutions in August 2021 and Classic Design in February 2022, AGR marks the third investment in Crestview’s strategy to build Convergix into a diversified automation solutions provider targeting the global $500+ billion market, with a particular focus on the $70 billion global systems integration and connectivity segments. Financial terms of the transaction were not disclosed.

Read More


Latest Articles

  • Implementing Functional Safety Requirements

    Implementing Functional Safety Requirements

    The Safety Functional Requirements Specification (SFRS; sometimes referred to as SRS or Safety Requirements Specification) is the plan for the safety controls on a machine and is the second step of the safety lifecycle. The SFRS document serves as a framework for the safety control system design, is informed by prior work done in the… Read More…

  • From Endress+Hauser, 24/7 Digital, Plant-Wide Health Monitoring for Rockwell Systems Optimizes Workflows and Processes

    From Endress+Hauser, 24/7 Digital, Plant-Wide Health Monitoring for Rockwell Systems Optimizes Workflows and Processes

    Endress+Hauser’s Asset Health Monitoring Solution–Rockwell Edition, now available for installation, provides operators with a centralized, digital overview of plant-wide device health to avoid unscheduled shutdowns and accelerate troubleshooting. It not only presents early visibility of problematic devices but distinguishes itself by adding likely causes and remedies to such a report so problems can be fixed… Read More…