Case Study: Maintenance Inspection Windows on Transformers

EIN LA Flir casestudy 400

June 10, 2019

Everyone knows that Thomas Alva Edison invented the lightbulb; but who invented the transformer – perhaps the most important electrical machine ever developed? The ZBD model alternating-current transformer was invented in 1885 at the Ganz Works in the Austro-Hungarian Empire by three Hungarian engineers: Karoly Zipernowsky, Otto Blathy and Miksa Deri (ZBD comes from the initials of their last names). Today, transformers are everywhere, feeding various voltages into our homes and businesses. When a transformer fails in a commercial or industrial environment, that failure can disrupt a significant portion of facility operations.

When commercial or industrial entities perform Criticality Assessment of their infrastructure assets, main transformers with power ratings of 500 KVA and above usually rank very high in the Risk Priority Number tables. With their high cost of replacement, long lead times of typically 12 weeks or more, high in/out swap costs and EIN LA Flir casestudy 2 400with many modes of failure impossible to repair onsite, transformers can become a weak link for reliability in an electrical distribution system. While an electrical distribution system that has been designed for redundancy, such as Main-Tie-Main configurations with each transformer loaded at less than 50% of nameplate capacity, can alleviate the impact of a failure, this is not the only consideration. Large amounts of fault energy are available, making some failure modes potentially hazardous to personnel. In addition, many transformers are oil filled, making flammability and environmental impacts additional considerations. It is much better to come up with ways to detect problems and prevent failures in the first place than to wait until failures occur to rectify them. A complete transformer failure can easily add up to tens of thousands of dollars in repair and downtime costs.

Fortunately, there are many types of Condition Based Maintenance (CBM) technologies that can be employed to catch the early warning signs of failure on transformers. Infrared inspection can detect loose connections, EIN LA Flir casestudy 3 400weak crimps and cable creepage due to thermal cycling. Contact ultrasound (also known as structure borne ultrasound) can detect loose windings and other mechanical issues. Airborne ultrasound can detect arcing, tracking, and corona, all of which emit high frequency signals in the ultrasound spectrum above 20 kHz. Ultraviolet (UV) cameras can be used to confirm the exact location of a corona event. Visual inspection can detect airborne contaminants, water ingress and pest ingress.

On oil filled transformers, periodic oil analysis can detect paper degradation, oil degradation, leaks and excessive acidity (insulation breakdown). Dissolved gas analysis of oil can further detect signs of thermal faults and partial discharge activity inside the transformer chamber. Finally, Transient Earth Voltage (TEV) detection, another form of partial discharge event, can find hidden defects inside the insulating components of a transformer.

Most of these CBM techniques require the equipment to be energized and operating under normal load conditions to provide useful quantitative data. Of course, this creates some safety considerations that must be accounted for, especially under the scrutiny of new guidelines embedded in the NFPA 70E 2018 edition. If any of these inspection tasks require opening the doors or covers of the transformer, then there is an elevated risk of an arc flash or electrocution to the personnel involved. Besides being qualified, workers must wear an appropriate level of Personal Protective Equipment (PPE) in accordance with the Arc Flash incident energy available. At the transformer, this arc flash risk can be significant and a barrier to performing the inspection and data collection tasks altogether. Furthermore, the Hierarchy of Control concept embedded in the NFPA 70E mandates that other alternatives to open panel work be deployed if possible and practical, including substitution of non-hazardous for hazardous tasks.

Fortunately, there are practical solutions that exist for virtually all these inspection types that substitute safer methods of data collection via a safety-by-design approach and the use of Electrical Maintenance Safety Devices (EMSD).

Maintenance Inspections Solutions, like those available from FLIR, can be installed on virtually any transformer and allow users to perform visual, infrared and ultraviolet inspections through a single device. Large format IRW-XPx rectangular windows mean that a single unit can be used for the LV connections and another for the HV connections on a transformer. While manipulating the cover of these types of windows, the equipment stays in a closed and guarded condition and the technician does not violate the restricted approach boundary so, per NFPA 70E Table 130.5 (C), they do not need to wear any special PPE as there is no increased likelihood of an Arc Flash occurrence.

Oil sampling ports can also be brought outside of the transformer cable compartment, with several vendors offering retrofit kits that permit safe sampling as well as providing an optional external pressure gauge and nitrogen insert to relieve vacuum. Of course, contact ultrasound and PD (TEV) detection are performed on the external skin of the equipment in a closed condition, and so no special Electrical Maintenance Safety Device (EMSD) is normally required for that type of inspection.

The optimum frequency of different inspection techniques is a function of the criticality of the assets in question. Following a cross functional team Failure Modes and Effects Analysis (FMEA) approach, each facility should attempt to classify their assets based on replacement cost, lead time, average repair cost, Mean Time to Repair (MTTR), potential safety impacts of failure, potential environmental impacts of failure, and cost of downtime for the asset. Assets are then classified as critical to the operation of the facility, important to the operation of the facility, or as support assets with limited impact to the facility, based on an agreed upon point system.

Table 1, below, provides a normal recommendation for inspection frequency for the different CBM technologies based on transformer asset criticality. 

It is imperative that data be collected and trended over time. For many of these measured parameters, a baseline can be set for “normal” operation shortly after the transformer goes into service. 

Flit table1 2

Assessments of asset health can only be made by collecting data at regular intervals and comparing long term trends. Again, the key parameters being collected for each inspection type are as follows:

Infrared

  • Temperature at booted connections
  • Temperature at crimped connections
  • Temperature at bolted connections
  • Oil tank temperature scan (for hot and cold spots indicating possible problems)
  • Load tap changer tank temperature differential to main tank

Visual

  • Dust ingress, water ingress, pest ingress
  • Water stains from previously standing water
  • Corrosion
  • Visual signs of partial discharge (if detected by other CBM techniques)
  • Fan operation
  • Oil leakage
  • Soiled bushings

Airborne Ultrasound

  • Decibel values at pre-determined test points
  • Analysis of waveform (time and frequency domain analysis) to determine nature of PD

Structure Borne Ultrasound

  • Decibel values at defined test points
  • Waveform analysis for fault type determination

TEV (Partial Discharge)

  • Decibel values at pre-determined test points
  • Phase-resolved partial discharge plots (comparative analysis for trends)

Oil Sampling

  • Oil pressure (gauge reading)
  • Oil temperature (gauge reading)
  • Oil quality (acidity, moisture content, dielectric properties) dissolved gas levels (ppm) including atmospheric gases, oxides of carbon, hydrocarbons and hydrogen

To summarize, the use of EMSD like Maintenance Inspection Windows and external Oil Sampling ports on transformers can take the danger out of the CBM data collection tasks and eliminate the need for energized open panel work. With the risks eliminated, the inspection becomes possible with a single technician with no cumbersome arc flash PPE required – meaning the data collection can be done much more efficiently as well. With increased inspection frequency, the potential problems that lead to unexpected failures of transformers can be detected earlier and preventative intervention can be initiated. Not only does this ensure compliance with NFPA 70E guidelines, but it also makes economic sense to monitor and protect your critical transformer assets. Experience has shown that transformer protection by fuses alone is not adequate to prevent fires in the event of a short circuit. The key is to prevent the possible causes of a short circuit by detecting the early warning signs with CBM techniques.

Related Articles


Changing Scene

  • Gary Martins Joins Weidmuller Canada as Managing Director

    Gary Martins Joins Weidmuller Canada as Managing Director

    Weidmüller Group is delighted to announce the appointment of Gary Martins as the new Managing Director for Canada. Gary brings an impressive 28 years of experience in the automation industry, making him the ideal leader to drive Weidmuller Canada’s growth and innovation. Gary’s distinguished career includes key leadership roles at B&R Automation, Murrelektronik, and Phoenix… Read More…

  • Littelfuse Announces CEO Retirement and Leadership Transition

    Littelfuse Announces CEO Retirement and Leadership Transition

    Littelfuse, Inc. has recently announced that David Heinzmann, President and Chief Executive Officer, has informed the Board of Directors of his intention to retire as President and CEO. The Board has appointed Dr. Greg Henderson, a member of the Littelfuse Board of Directors, as President and Chief Executive Officer effective February 10, 2025. Mr. Heinzmann will… Read More…


Sponsored Content
The Easy Way to the Industrial IoT

The way to the Industrial IoT does not have to be complicated. Whether access to valuable data is required or new, data-driven services are to be generated, Weidmuller enables its customers to go from data to value the easy way. Weidmuller’s comprehensive and cutting-edge IIoT portfolio applies to greenfield and brownfield applications. Weidmuller offers components and solutions from data acquisition, data pre-processing, data communication and data analysis.

Visit Weidmuller’s Industrial IoT Portfolio.


ADVANCED Motion Controls Takes Servo Drives to New Heights (and Depths) with FlexPro Extended Environment Product Line

Advanced Motion Controls is proud to announce the addition of six new CANopen servo drives with Extended Environment capabilities to their FlexPro line. These new drives join AMC’s existing EtherCAT Extended Environment FlexPro drives, making the FlexPro line the go-to solution for motion control applications in harsh environments.

Many motion control applications take place in conditions that are less than ideal, such as extreme temperatures, high and low pressures, shocks and vibrations, and contamination. Electronics, including servo drives, can malfunction or sustain permanent damage in these conditions.

Read More


Service Wire Co. Announces New Titles for Key Executives

Bruce Kesler and Mark Gatewood have been given new titles and responsibilities for Service Wire Co.

Bruce Kesler has assumed the role of Senior Director – Business Development. Bruce will be responsible for Service Wire’s largest strategic accounts and our growing Strategic Accounts Team.

Mark Gatewood has been promoted to the role of Vice President – Sales & Marketing. In this role, Gatewood will lead the efforts of Service Wire Company’s entire sales and marketing organization in all market verticals.

Read More


Tri-Mach Announces the Purchase of an Additional 45,000 sq ft. Facility

Tri-Mach Elmira Facility

Recently, Tri-Mach Inc. was thrilled to announce the addition of a new 45,000 sq ft. facility. Located at 285 Union St., Elmira, ON, this facility expands Tri-Mach’s capabilities, allowing them to better serve the growing needs of their customers.

Positioning for growth, this additional facility will allow Tri-Mach to continue taking on large-scale projects, enhance product performance testing, and provide equipment storage for their customers. The building will also be the new home to their Skilled Trades Centre of Excellence.

Read More


JMP Parent Company, CONVERGIX Acquires AGR Automation, Expanding Global Reach

Convergix Automation Solutions has completed the acquisition of AGR Automation (“AGR”), a UK-based provider of custom, high-performance automation design and systems integration primarily to the life sciences industry.

Following Convergix’s acquisitions of JMP Solutions in August 2021 and Classic Design in February 2022, AGR marks the third investment in Crestview’s strategy to build Convergix into a diversified automation solutions provider targeting the global $500+ billion market, with a particular focus on the $70 billion global systems integration and connectivity segments. Financial terms of the transaction were not disclosed.

Read More


Latest Articles

  • Leviton’s Premier Cat 6A SST Cable Now Available in TEKPAK Box

    Leviton’s Premier Cat 6A SST Cable Now Available in TEKPAK Box

    Leviton has proudly launched its flagship premier Cat 6A SST cable in the convenient TEKPAK box which is made from 100% recyclable cardboard. Read More…

  • Three Smart Factory Trends that Pay Big Dividends

    Three Smart Factory Trends that Pay Big Dividends

    January 21, 2025 Networked Motor Control Center Technology Accelerates Productivity, Savings & Safety By Diego Wilches, Global Product Manager, IEC LVMCC Rockwell Automation has seen manufacturers around the globe investing billions of dollars in smart manufacturing and production plants. Industry experts project the demand for smart factories will double by 2032 to $322 billion because of the… Read More…