How to Avoid a Shocking End: Protecting Workers From Injury

August 27, 2019

Do you know the first question you should ask before opening an electrical enclosure? Plant managers, building maintenance staff and electrical repair personnel repeat the question “Is it safe?” so often that it’s practically a mantra. And rightfully so. The people in these professions are constantly at risk of experiencing a life-threatening current while on the job. They regularly take precautions such as removing their wedding bands and must be vigilant in checking and rechecking for telltale signs such as alerting lights and sounds—all in the hope of returning home safe and sound at the end of their shifts.

The rates of accidental injury or fatality related to the risks of voltage testing in industry. (Image courtesy of Panduit.)

According to Panduit, 18.3 percent of facilities surveyed reported that personal injuries occurred when a worker was using a handheld voltage test instrument. The risk associated with voltage testing should not be ignored, especially when the rate of “near misses” is 36.7 percent.

Companies and agencies have developed processes to help ensure worker safety around live wires. Most commonly these processes include protocols such as the lockout-tagout (LOTO) method. In fact, some jurisdictions in the United States and Canada require the implementation of the LOTO method whenever workers are dealing with heavy, hazardous machinery during repair or maintenance. While LOTO works to represent that voltage testing has taken place and that machinery is safe to work with, there are cases where the LOTO protocol failed (sometimes due to criminal negligence).

The network infrastructure and electrical wiring company Panduit, based in the United States, claims to have simplified matters by creating a device that can be installed in the enclosure and, with a simple red or green indicator light, shows if it is safe for workers to proceed.

Voltage Indicators

A voltage indicator is a tool used by workers to check to see if it is safe to touch or be near electrical equipment. These tools can indicate the hazardous presence of voltage and alert workers if there is. However, these tools cannot verify if the equipment has been de-energized. To have the ability to confirm that the equipment has been de-energized, such a tool or device would need to be able to be grounded. If equipment cannot be de-energized—or it cannot be verified that it has been grounded—then there is a risk for workers on such equipment.

Voltage Testers

The reason that indicators are necessary is that the devices known as voltage testers aren’t able to warn of the presence of hazardous voltages unless a test has been run. This means that if a worker runs such a test and there is a hazardous voltage, the worker will be exposed to injury in the time before they can run the test. It would be helpful if there were a device on the machine that could alert workers to the presence of hazardous voltages.

Moreover, voltage testers are often portable. This means that they too are not often grounded while they are being used and so are also unable to verify if a process of de-energizing has taken place on electrical equipment. Just because electrical machinery has been turned off, that doesn’t mean that DC voltages aren’t lingering in some way; a possibly harmful static charge could even have been built up in the machinery without a ground. Developing a sensor that would be able confirm to workers if the ground is working properly and is properly de-energizing the machinery could make strides toward worker safety. This could decrease the rate of worker injuries as well as decrease the occurrences of delays in workshops or manufacturing floors.

How AVT Works as a Tester and an Indicator

So why not combine voltage testers, voltage indicators and grounding, and develop a simple method of alerting workers to the safety of their surroundings that is integrated directly into machinery or electrical equipment? This is precisely what Panduit has done with its VeriSafe Absence of Voltage Tester (AVT).

The way the device works is simple. The interface for the AVT—the indicator module—has a button to interact with, and an array of LEDs using red, yellow and green to represent how safe the equipment is. Red for not safe. Yellow for a test that cannot confirm the safety of equipment or that should be retested. Green for confirmed an unhazardous presence of voltage and that the equipment has been de-energized. The indicator module is usually installed into the door of a panel that accesses the electrical equipment.

Tests can be run by simply clicking the button on the front of the device. The absence of any LED light being alit doesn’t necessarily mean that the equipment has been de-energized and suggests that a test should be run. If a hazardous voltage is present, the red LED will be alit without the need for a worker to run a test: this would alert them that the equipment or panel is not safe to work with and should be turned off and de-energized in some capacity.

The way that the indicator module knows which LED to activate is where the tests take place: in the isolation module. The isolation module has four leading wires running from it. Two are integrated into the electrical equipment itself at two distinct junctions with the main power lead. This will test for any presence of hazardous voltages, including those that residually remain even after equipment has been turned off. The other two leads act as grounds, allowing for proper de-energization.

Between the indicator and isolation module, the AVT runs as a voltage indicator (by showing a red light whenever there is hazardous voltage), a tester (through the sensor leads that test for residual voltages), and a ground (through the ground leads). Not only does this simplify the process of checking for hazardous voltages, but it also makes it safer and is reliable. The AVT brings together the necessary features of indicators, testers and grounds.

What’s in the Box and the Installation Process

Installation is relatively easy. As mentioned, both the sensor feeds and the ground feeds must be separated from one another. Otherwise, the indicator can become confused and will continue to ask to be tested—never being able to indicate if the equipment is safe or not. Attach the sensor feeds to where a worker would usually test for voltage. The isolation module can be installed onto a rack within the panel. The indicator module can be installed into the door, so that it is accessible from the outside.

Saving Lives

One of the main advantages of installed detectors versus portable ones is that they decrease the opportunity for hazardous voltages to injure workers. Even after going through a LOTO process, there is still a risk that lingering voltages can remain in equipment and can harm workers. The AVT works to ensure that workers know more about their surroundings to protect their health.

Related Articles


Changing Scene


Sponsored Content
The Easy Way to the Industrial IoT

The way to the Industrial IoT does not have to be complicated. Whether access to valuable data is required or new, data-driven services are to be generated, Weidmuller enables its customers to go from data to value the easy way. Weidmuller’s comprehensive and cutting-edge IIoT portfolio applies to greenfield and brownfield applications. Weidmuller offers components and solutions from data acquisition, data pre-processing, data communication and data analysis.

Visit Weidmuller’s Industrial IoT Portfolio.


ADVANCED Motion Controls Takes Servo Drives to New Heights (and Depths) with FlexPro Extended Environment Product Line

Advanced Motion Controls is proud to announce the addition of six new CANopen servo drives with Extended Environment capabilities to their FlexPro line. These new drives join AMC’s existing EtherCAT Extended Environment FlexPro drives, making the FlexPro line the go-to solution for motion control applications in harsh environments.

Many motion control applications take place in conditions that are less than ideal, such as extreme temperatures, high and low pressures, shocks and vibrations, and contamination. Electronics, including servo drives, can malfunction or sustain permanent damage in these conditions.

Read More


Service Wire Co. Announces New Titles for Key Executives

Bruce Kesler and Mark Gatewood have been given new titles and responsibilities for Service Wire Co.

Bruce Kesler has assumed the role of Senior Director – Business Development. Bruce will be responsible for Service Wire’s largest strategic accounts and our growing Strategic Accounts Team.

Mark Gatewood has been promoted to the role of Vice President – Sales & Marketing. In this role, Gatewood will lead the efforts of Service Wire Company’s entire sales and marketing organization in all market verticals.

Read More


Tri-Mach Announces the Purchase of an Additional 45,000 sq ft. Facility

Tri-Mach Elmira Facility

Recently, Tri-Mach Inc. was thrilled to announce the addition of a new 45,000 sq ft. facility. Located at 285 Union St., Elmira, ON, this facility expands Tri-Mach’s capabilities, allowing them to better serve the growing needs of their customers.

Positioning for growth, this additional facility will allow Tri-Mach to continue taking on large-scale projects, enhance product performance testing, and provide equipment storage for their customers. The building will also be the new home to their Skilled Trades Centre of Excellence.

Read More


JMP Parent Company, CONVERGIX Acquires AGR Automation, Expanding Global Reach

Convergix Automation Solutions has completed the acquisition of AGR Automation (“AGR”), a UK-based provider of custom, high-performance automation design and systems integration primarily to the life sciences industry.

Following Convergix’s acquisitions of JMP Solutions in August 2021 and Classic Design in February 2022, AGR marks the third investment in Crestview’s strategy to build Convergix into a diversified automation solutions provider targeting the global $500+ billion market, with a particular focus on the $70 billion global systems integration and connectivity segments. Financial terms of the transaction were not disclosed.

Read More


Latest Articles

  • Implementing Functional Safety Requirements

    Implementing Functional Safety Requirements

    The Safety Functional Requirements Specification (SFRS; sometimes referred to as SRS or Safety Requirements Specification) is the plan for the safety controls on a machine and is the second step of the safety lifecycle. The SFRS document serves as a framework for the safety control system design, is informed by prior work done in the… Read More…

  • From Endress+Hauser, 24/7 Digital, Plant-Wide Health Monitoring for Rockwell Systems Optimizes Workflows and Processes

    From Endress+Hauser, 24/7 Digital, Plant-Wide Health Monitoring for Rockwell Systems Optimizes Workflows and Processes

    Endress+Hauser’s Asset Health Monitoring Solution–Rockwell Edition, now available for installation, provides operators with a centralized, digital overview of plant-wide device health to avoid unscheduled shutdowns and accelerate troubleshooting. It not only presents early visibility of problematic devices but distinguishes itself by adding likely causes and remedies to such a report so problems can be fixed… Read More…