Harsh Environment & Design Consideration

PBUS-41-Newark-logo-400.jpg

July 20, 2022

The use of sophisticated electronic and sensing devices to improve and expand manufacturing, machining, and production processes in industrial applications is only possible if all components survive the difficult environment. Systems must endure hot, humid, and harsh conditions and destructive electric and magnetic fields.

The specific environmental conditions in which a product is used affects its specifications. Such specifications must be determined at the beginning. Difficult conditions in industrial applications include particulate ingress, extreme temperature, physical impact, Electrostatic Discharge (ESD), Electromagnetic Interference (EMI), and vibration. All these conditions, if unchecked, will destroy electronic equipment over time. This article discusses critical design considerations in a harsh industrial environment.

Harsh Temperature and Semiconductor Thermal Consideration

High temperatures are a major contributor to a punishing environment. A cool climate is a necessity for effective electronic device operational performance. The microclimate inside the automobile hood is a toxic one where the ambient temperature rarely drops below 125 C. Combustion and exhaust gas sensors must work in heated, harsh environments. High-temperature electronics must make up the control circuitry administering the actuators and sensors.

When used in high-temperature environments, electronics must have active or passive cooling to keep parts within their respective operating temperature ranges. This is impractical in most real-world situations. Semiconductor (IC) robustness includes operating temperature range, fault protection, managing high electrical noise, and ESD. Robustness is a crucial performance factor for an extended operation and obtains a reputable, reliable final product. Durability is a must in an industrial ecosystem characterized by extreme operating conditions, with IC temperatures swinging anywhere between -40°C to +85°C. Elevated temperature operation is here to stay, and the automotive industry may eventually witness working temperatures between -40°C to +125°C.

Thermal issues crop up when electronic devices are kept in an air-tight industrial indoor environment. The devices dissipate heat, and rising temperatures will damage devices if improperly managed. Voltage regulators and power ICs use thermal shutdowns to prevent such a scenario. Choosing packages with super low thermal impedances help to transfer heat away from the device. The addition of aluminum heat pipes or heat sinks to the concerned case offers a lower thermal impedance path to air. This reduces operating temperature, greatly improving its longer-term reliability.

Managing Voltage Transients

Incorrect wiring or accidental shorts make voltage transients on power-supply lines. These transients can damage downstream circuitry if the inputs remain unprotected. A simple and discreet circuit consisting of a series fuse with a Transient-Voltage Suppressor (TVS) diode or Zener diode, or Metal Oxide Varistors (MOV) is generally used to protect against most voltage transients.

2492990-mov-zender-tvs-diode.jpg

A more controlled approach to managing overvoltage and transient events is to integrate the reaction circuitry and protection threshold into an IC. Internal diodes and comparators are designed into multiple protection and supervisory ICs to ensure a definitive response every time. A few ICs include high-voltage fault safeguards for data lines. A fault-safeguard device latches on when normal data-line voltage levels are exceeded to shield itself from damage. A good example is the MAX4708 multiplexer family. For more information on transient voltage suppressor products, click here.

Intrinsic Safety Consideration

Intrinsic safety refers to a designed explosion protection method shielding the electrical circuit. Intrinsically safe systems restrict energy even when there are multiple failure conditions. These barriers are employed to restrict the energy discharged if a component or wiring fails. The aim is to stop ignition. A few recommendations for intrinsic safety design are described in the following content.

Batteries used must be sufficiently robust to survive anticipated environmental conditions. There should be minimal electrolyte leakage, which can happen during severe short-circuit environments.

Energy-storing parts like capacitors, inductors, and ferrite beads can be vulnerable to compliance with spark-ignition parameters. The stored available energy in them must be restricted so that there is insufficient energy to ignite an explosive atmosphere. Encapsulation is used to shield circuits against any chances of spark ignition.

Conformal Coatings

Conformal coatings are essential to enhance the long-term performance and reliability of electronic assemblies. The product offers enhanced protection against dust, shock, vibration, chemicals, dirt, abrasion, fungus, moisture, and mechanical stress. Conformal coatings include: one part UV curing formulations, one and two-part silicones, one and two-part epoxies, and a specialized, cost-effective latex system. To learn more about safety tips in harsh industrial environments, download the e-book The Ultimate Guide to Harsh Environment Ratings & Design.

Ingress Protection (IP) and NEMA Ratings

A sealed enclosure is used to prevent the ingress of water or dust. The sealed-off volume of space is used to safe-house electronics within harsh environments. The contextual standard is IEC 60529, as defined by the International Electrotechnical Commission (IEC). This standard designates the number of types and degrees of protection afforded by an enclosure to its electrical equipment. The IP code itself bears the form “IP XY,” where the digits X and Y denote protection from particle ingress and water, respectively. They are commonly used for applications exposed to the elements, along with dust or moisture. Typical user industries include marine, offshore oil and gas platforms, security, lighting, leisure, and food processing.

The National Electrical Manufacturers Association (NEMA) offers a popular protective enclosures standard similar to IP Code (IEC 60529). The NEMA 250 covers a wider sweep of harsh conditions than the IP code. It also includes ratings, both hazardous and nonhazardous, for indoor and outdoor locations. Such conditions include the ingress of foreign objects (like dust or fibers), water, and corrosive agents, including various gases and atmospheres. AE1360 is an example of IP66, NEMA 4 metal enclosure for electrical use in a harsh industrial environment. For more information on IP and NEMA rating products, click here.

2492990-metal-enclosure.jpg

Considerations for Connectors

Designers must take into account multiple factors like the influence of temperature, solvents, icing, salt exposure, moisture, corrosion, and fungus during a connectors’ selection. A wrong choice can affect the integrity, performance, and lifespan of the application. A few factors must be considered when selecting connectors for harsh environments.

Communication Protocols is a key consideration for the communication application. Connectors carry different signals like RS232 or I2C serial interfaces, RF transmissions, audio and video signals, power, or high-speed data communications. The level of data rates and characteristics should be taken into account. When it comes to power needs, the designer should check the voltage and current requirements.

Space requirements are exacting in the era of miniaturization. All modern applications continue to switch to chips and technologies that provide advanced functionalities within small form factors. Design engineers should be careful to opt for connectors as per demand.

Termination Style is another consideration. Harsh environment connectors provide metallic sealing along with an electrical connection. This electrical connection is achieved by soldering the connector directly to the board or through a cable termination. Connectors must shield components from all Electromagnetic Interference (EMI) radiations. This radiation may either pass into the box and hinder the device’s functionality or exit the box and interfere with other devices. A few specially chosen connectors fitted with a conductive gasket and plated metal shells ensure optimum EMI performance in harsh environments.

2492990-mrd-connector.jpg

MRD series connectors are an excellent example of industrial harsh environment connectors, available in 2, 3, and 4 position form factors. Housing options include all plastic constructions as well as metal locking bodies for greater durability. Panel mount and cable termination options are available with or without finger-proof protection. They are IP67 water/dustproof and meet environmental, health and safety requirements. For more information on connector products, click here.

Source

Related Articles


Changing Scene

  • Gary Martins Joins Weidmuller Canada as Managing Director

    Gary Martins Joins Weidmuller Canada as Managing Director

    Weidmüller Group is delighted to announce the appointment of Gary Martins as the new Managing Director for Canada. Gary brings an impressive 28 years of experience in the automation industry, making him the ideal leader to drive Weidmuller Canada’s growth and innovation. Gary’s distinguished career includes key leadership roles at B&R Automation, Murrelektronik, and Phoenix… Read More…

  • Littelfuse Announces CEO Retirement and Leadership Transition

    Littelfuse Announces CEO Retirement and Leadership Transition

    Littelfuse, Inc. has recently announced that David Heinzmann, President and Chief Executive Officer, has informed the Board of Directors of his intention to retire as President and CEO. The Board has appointed Dr. Greg Henderson, a member of the Littelfuse Board of Directors, as President and Chief Executive Officer effective February 10, 2025. Mr. Heinzmann will… Read More…


Sponsored Content
The Easy Way to the Industrial IoT

The way to the Industrial IoT does not have to be complicated. Whether access to valuable data is required or new, data-driven services are to be generated, Weidmuller enables its customers to go from data to value the easy way. Weidmuller’s comprehensive and cutting-edge IIoT portfolio applies to greenfield and brownfield applications. Weidmuller offers components and solutions from data acquisition, data pre-processing, data communication and data analysis.

Visit Weidmuller’s Industrial IoT Portfolio.


ADVANCED Motion Controls Takes Servo Drives to New Heights (and Depths) with FlexPro Extended Environment Product Line

Advanced Motion Controls is proud to announce the addition of six new CANopen servo drives with Extended Environment capabilities to their FlexPro line. These new drives join AMC’s existing EtherCAT Extended Environment FlexPro drives, making the FlexPro line the go-to solution for motion control applications in harsh environments.

Many motion control applications take place in conditions that are less than ideal, such as extreme temperatures, high and low pressures, shocks and vibrations, and contamination. Electronics, including servo drives, can malfunction or sustain permanent damage in these conditions.

Read More


Service Wire Co. Announces New Titles for Key Executives

Bruce Kesler and Mark Gatewood have been given new titles and responsibilities for Service Wire Co.

Bruce Kesler has assumed the role of Senior Director – Business Development. Bruce will be responsible for Service Wire’s largest strategic accounts and our growing Strategic Accounts Team.

Mark Gatewood has been promoted to the role of Vice President – Sales & Marketing. In this role, Gatewood will lead the efforts of Service Wire Company’s entire sales and marketing organization in all market verticals.

Read More


Tri-Mach Announces the Purchase of an Additional 45,000 sq ft. Facility

Tri-Mach Elmira Facility

Recently, Tri-Mach Inc. was thrilled to announce the addition of a new 45,000 sq ft. facility. Located at 285 Union St., Elmira, ON, this facility expands Tri-Mach’s capabilities, allowing them to better serve the growing needs of their customers.

Positioning for growth, this additional facility will allow Tri-Mach to continue taking on large-scale projects, enhance product performance testing, and provide equipment storage for their customers. The building will also be the new home to their Skilled Trades Centre of Excellence.

Read More


JMP Parent Company, CONVERGIX Acquires AGR Automation, Expanding Global Reach

Convergix Automation Solutions has completed the acquisition of AGR Automation (“AGR”), a UK-based provider of custom, high-performance automation design and systems integration primarily to the life sciences industry.

Following Convergix’s acquisitions of JMP Solutions in August 2021 and Classic Design in February 2022, AGR marks the third investment in Crestview’s strategy to build Convergix into a diversified automation solutions provider targeting the global $500+ billion market, with a particular focus on the $70 billion global systems integration and connectivity segments. Financial terms of the transaction were not disclosed.

Read More


Latest Articles

  • Leviton’s Premier Cat 6A SST Cable Now Available in TEKPAK Box

    Leviton’s Premier Cat 6A SST Cable Now Available in TEKPAK Box

    Leviton has proudly launched its flagship premier Cat 6A SST cable in the convenient TEKPAK box which is made from 100% recyclable cardboard. Read More…

  • Three Smart Factory Trends that Pay Big Dividends

    Three Smart Factory Trends that Pay Big Dividends

    January 21, 2025 Networked Motor Control Center Technology Accelerates Productivity, Savings & Safety By Diego Wilches, Global Product Manager, IEC LVMCC Rockwell Automation has seen manufacturers around the globe investing billions of dollars in smart manufacturing and production plants. Industry experts project the demand for smart factories will double by 2032 to $322 billion because of the… Read More…