What Does the MTBF (Mean Time Between Failures) Tell You About System Component Reliability? An Analysis From PULS

May 11, 2023

Maximilian Hülsebusch 

MTBF is the measure for the reliability of a device or system component. In this blog article you will learn what exactly is meant by MTBF, why it is an important quality indicator for power supplies and how it differs from service lifetime.

The term MTBF appears in the data sheets of various technical system components and often causes confusion. This is mainly due to the different calculation methods and the risk of confusion with the service lifetime of a device. At PULS, many R&D specialists deal with both parameters on a daily basis. With this knowledge, PULS brings a little light into the darkness in this blog article.

What is MTBF?

The term MTBF is the abbreviation for “Mean Time Between Failures”. The value is considered a measure of the reliability of electronic devices, assemblies or systems.

Users thus receive an expected value for how often a device fails on a statistical average. Of course, most manufacturers try to keep the number of failures as low as possible; however, it is inevitable that a technical device will fail with a certain probability. Knowledge of this value is particularly important for the maintenance of equipment.

How is the MTBF Calculated?

The MTBF is the reciprocal of the failure rate λ (lambda). The failure rate λ in turn indicates how many failures are statistically to be expected when operating a certain number of units over a certain period of time. Due to the specification in 1/hour, λ is a very small number.

The MTBF, on the other hand, is specified in hours and is thus easier to use in practice, which is why this value has become accepted as a common indicator of reliability.

The correlation between failure rate and MTBF becomes clear with a calculation example.

In a factory, 1,000 identical units are installed and operated for 2,000 hours. This results in a total of 2 million operation hours. If 4 units fail during this period of time, then the following calculation for the failure rate λ applies:

Calculation of the failure rate λ.

For the MTBF as the reciprocal of the failure rate, the following formula applies:

The MTBF is the reciprocal of the failure rate.

It is important to note that both the failure rate and the MTBF relate to statistical failures. These apply from the first hour of operation.

How to Visualize the MTBF?

The best-known graphical visualisation of the MTBF is the so-called bathtub curve (see Figure 1).

Early failures (see phase A) are not taken into account in the MTBF, as the manufacturer should exclude them from being delivered to customers thanks to internal quality testing.

During the operational phase (see phase B), higher temperatures in particular can accelerate the processes that ultimately lead to failure. The thermal stress to which the components are exposed in such a case increases the failure rate. Therefore, system developers and maintenance specialists are primarily concerned with low temperatures in the application in order to keep the failure rate as low as possible.

By the way, wear effects (see phase C) are not included in the MTBF, as only the phase of the service lifetime is considered in which no age-related failures may occur.

The bathtub curve is a graphical visualisation of the MTBF.
Figure 1: The bathtub curve is a graphical visualisation of the MTBF.

How is the Failure Rate λ Determined in Practice?

The failure rate λ can be determined in different ways. Depending on which way is chosen, the results will differ. Users must therefore always refer to the specification and the underlying operating conditions for the determination of the failure rate or the MTBF values stated in the product data sheet.

Using the example of a DIN rail power supply we look at two different approaches for the calculation.

The quickest and simplest method to determine λ is the so-called “Parts Count”. Here, only the individual components in the power supply unit are counted and multiplied by an average failure rate. The result is then evaluated as the failure rate of the entire power supply unit. However, this method is inaccurate.

A much more complex alternative is to determine the failure rate for each individual component. For this purpose, the electrical load is calculated for each component and the thermal stress is determined by measurements. Based on these values, the failure rate for the component is determined via software. This procedure is common for PULS.

Various standards can be applied for the calculation of the failure rate. The MIL Handbook 217F is frequently used for the calculation on a global level. However, the failure rates determined on the basis of MIL are rather to be assessed as conservative. The values based on the calculation method of the Siemens standard SN 29500 according to IEC 61709 are more realistic.

The sum of the individual component failure rates finally results in the total failure rate λ of the power supply unit. Next the MTBF of the power supply unit can be calculated, as described above.

Good to Know!

MTBF values are worthless without naming the underlying standard and the operating conditions. In particular, the load conditions and the prevailing ambient temperatures are decisive. When comparing products from different manufacturers, special attention must be paid to these values and, if necessary, enquiries must be made.

PULS provides all information relevant to the MTBF in its product data sheets.

What is the Difference Between MTBF and Service Lifetime?

The data sheet information on service lifetime is not about statistical failures during the operating time. The service lifetime indicates the time after which the components become unusable due to wear.

In a power supply unit, special attention must be paid to the electrolytic capacitors. These components are considered to be life-determining, as they lose capacity over time due to the diffusion of electrolytes.

The electrolytic capacitor manufacturers specify an end of life in their data sheets. At this point, important parameters such as capacitance and internal resistance deviate from the initial value by a certain amount.

Electrolytic capacitors react particularly sensitively to high ambient temperatures. Every 10 °C increase in temperature shortens the service lifetime of the electrolytic capacitors by a factor of 2 and thus has a direct influence on the service lifetime of the power supply unit.

Why are the MTBF and Service Lifetime of a Power Supply Important?

Industrial power supplies should be reliable from the first minute of operation and at the same time secure the power supply of a system for many years. Therefore, both MTBF and service lifetime are important quality indicators of a power supply unit and should be at a high level.

At PULS, the reliability and service lifetime of its power supplies have always had a very high priority. The corresponding values for MTBF and service lifetime are described in detail in the data sheets of the devices and specified precisely for various operating conditions.

These reliable values make it easier for customers and users to plan and realize complex systems that are often made up of hundreds of system components.

At the same time, reliable and durable power supplies are also good for our planet. Because the power supply units need to be replaced less often, resources are conserved and less electronic waste is produced.

Source

Related Articles


Changing Scene

  • Gary Martins Joins Weidmuller Canada as Managing Director

    Gary Martins Joins Weidmuller Canada as Managing Director

    Weidmüller Group is delighted to announce the appointment of Gary Martins as the new Managing Director for Canada. Gary brings an impressive 28 years of experience in the automation industry, making him the ideal leader to drive Weidmuller Canada’s growth and innovation. Gary’s distinguished career includes key leadership roles at B&R Automation, Murrelektronik, and Phoenix… Read More…

  • Littelfuse Announces CEO Retirement and Leadership Transition

    Littelfuse Announces CEO Retirement and Leadership Transition

    Littelfuse, Inc. has recently announced that David Heinzmann, President and Chief Executive Officer, has informed the Board of Directors of his intention to retire as President and CEO. The Board has appointed Dr. Greg Henderson, a member of the Littelfuse Board of Directors, as President and Chief Executive Officer effective February 10, 2025. Mr. Heinzmann will… Read More…


Sponsored Content
The Easy Way to the Industrial IoT

The way to the Industrial IoT does not have to be complicated. Whether access to valuable data is required or new, data-driven services are to be generated, Weidmuller enables its customers to go from data to value the easy way. Weidmuller’s comprehensive and cutting-edge IIoT portfolio applies to greenfield and brownfield applications. Weidmuller offers components and solutions from data acquisition, data pre-processing, data communication and data analysis.

Visit Weidmuller’s Industrial IoT Portfolio.


ADVANCED Motion Controls Takes Servo Drives to New Heights (and Depths) with FlexPro Extended Environment Product Line

Advanced Motion Controls is proud to announce the addition of six new CANopen servo drives with Extended Environment capabilities to their FlexPro line. These new drives join AMC’s existing EtherCAT Extended Environment FlexPro drives, making the FlexPro line the go-to solution for motion control applications in harsh environments.

Many motion control applications take place in conditions that are less than ideal, such as extreme temperatures, high and low pressures, shocks and vibrations, and contamination. Electronics, including servo drives, can malfunction or sustain permanent damage in these conditions.

Read More


Service Wire Co. Announces New Titles for Key Executives

Bruce Kesler and Mark Gatewood have been given new titles and responsibilities for Service Wire Co.

Bruce Kesler has assumed the role of Senior Director – Business Development. Bruce will be responsible for Service Wire’s largest strategic accounts and our growing Strategic Accounts Team.

Mark Gatewood has been promoted to the role of Vice President – Sales & Marketing. In this role, Gatewood will lead the efforts of Service Wire Company’s entire sales and marketing organization in all market verticals.

Read More


Tri-Mach Announces the Purchase of an Additional 45,000 sq ft. Facility

Tri-Mach Elmira Facility

Recently, Tri-Mach Inc. was thrilled to announce the addition of a new 45,000 sq ft. facility. Located at 285 Union St., Elmira, ON, this facility expands Tri-Mach’s capabilities, allowing them to better serve the growing needs of their customers.

Positioning for growth, this additional facility will allow Tri-Mach to continue taking on large-scale projects, enhance product performance testing, and provide equipment storage for their customers. The building will also be the new home to their Skilled Trades Centre of Excellence.

Read More


JMP Parent Company, CONVERGIX Acquires AGR Automation, Expanding Global Reach

Convergix Automation Solutions has completed the acquisition of AGR Automation (“AGR”), a UK-based provider of custom, high-performance automation design and systems integration primarily to the life sciences industry.

Following Convergix’s acquisitions of JMP Solutions in August 2021 and Classic Design in February 2022, AGR marks the third investment in Crestview’s strategy to build Convergix into a diversified automation solutions provider targeting the global $500+ billion market, with a particular focus on the $70 billion global systems integration and connectivity segments. Financial terms of the transaction were not disclosed.

Read More


Latest Articles

  • Leviton’s Premier Cat 6A SST Cable Now Available in TEKPAK Box

    Leviton’s Premier Cat 6A SST Cable Now Available in TEKPAK Box

    Leviton has proudly launched its flagship premier Cat 6A SST cable in the convenient TEKPAK box which is made from 100% recyclable cardboard. Read More…

  • Three Smart Factory Trends that Pay Big Dividends

    Three Smart Factory Trends that Pay Big Dividends

    January 21, 2025 Networked Motor Control Center Technology Accelerates Productivity, Savings & Safety By Diego Wilches, Global Product Manager, IEC LVMCC Rockwell Automation has seen manufacturers around the globe investing billions of dollars in smart manufacturing and production plants. Industry experts project the demand for smart factories will double by 2032 to $322 billion because of the… Read More…