|

Enhancing Servo System Performance and Reliability: The Critical Role of Regulated Power Supplies in Modern Control Applications

June 29, 2023

In a servo system, the choice between a regulated and unregulated power supply is crucial. It can significantly impact the performance, stability, and longevity of the system.

For servo systems, it is highly recommended to use a regulated power supply due to the following technical reasons:

Voltage Stability: Servo systems require precise control of motor position, velocity, and torque. A regulated power supply maintains a constant output voltage within a specified tolerance, typically less than 1% variation, regardless of fluctuations in input voltage or load current. This stability is essential for preventing servo motor torque and speed variations, ensuring smooth and accurate system operation.

Load Regulation: In a servo system, the load current may vary significantly due to changes in motor speed and torque, load inertia, and dynamic forces. A regulated power supply can maintain the output voltage level within the specified range even during these variations, providing consistent performance and preventing potential control loop instability.

Line Regulation: As input voltage may fluctuate due to grid disturbances or other electrical equipment in the system, a regulated power supply compensates for these variations to provide a consistent output voltage. This ensures that the servo system operates within its specified voltage range, maintaining precise control and preventing potential damage to components.

Ripple and Noise Reduction: Regulated power supplies typically exhibit lower output voltage ripple and noise compared to unregulated ones. High-frequency noise can couple into the servo system’s feedback and control signals, potentially causing jitter, reduced accuracy, and increased settling time. By using a regulated power supply, these issues can be mitigated, providing better performance and precision.

Protection Features: Regulated power supplies often include built-in protection mechanisms such as short-circuit, over-voltage, over-current, and over-temperature protection. These features help safeguard the servo system and its components from potential damage caused by electrical faults or thermal events, increasing system reliability and lifespan.


While regulated power supplies are generally recommended for servo systems due to their stability and performance benefits, there are some cases were using an unregulated power supply might be considered advantageous. Here are some reasons why someone might recommend unregulated power supplies:

Cost: Unregulated power supplies are often less expensive than their regulated counterparts. For projects with tight budgets or where the system’s performance and stability requirements are less stringent, an unregulated power supply might be chosen as a cost-saving measure.

Simplicity: Unregulated power supplies have a simpler design compared to regulated ones, which may result in fewer components, reduced complexity, and easier maintenance. This could be appealing for systems where the potential performance trade-offs are acceptable.

Size and weight: Due to their simpler design and fewer components, unregulated power supplies can be smaller and lighter than regulated ones. In applications where space and weight constraints are critical, an unregulated power supply might be an attractive option.

Efficiency: Unregulated power supplies can be more efficient than some types of regulated power supplies, especially linear regulators. Switching regulators (stabilized power supplies) generally have better efficiency than linear regulators, but in some cases, an unregulated power supply may still offer higher efficiency depending on the load and operating conditions.

Acceptable performance in specific cases: In some situations, the performance of the servo system might not be severely impacted by the voltage variations, noise, or other issues associated with unregulated power supplies. If the servo system is less sensitive to these factors or if the application can tolerate some degree of performance degradation, an unregulated power supply might be an acceptable choice.

While unregulated power supplies might be less expensive, they can introduce instability, noise, and potential risks to the servo system. For engineers designing servo systems, a regulated power supply is the preferred choice due to its ability to provide a stable, clean, and consistent voltage supply, ensuring optimal system performance, accuracy, and longevity.

Source

Related Articles


Changing Scene


Sponsored Content
The Easy Way to the Industrial IoT

The way to the Industrial IoT does not have to be complicated. Whether access to valuable data is required or new, data-driven services are to be generated, Weidmuller enables its customers to go from data to value the easy way. Weidmuller’s comprehensive and cutting-edge IIoT portfolio applies to greenfield and brownfield applications. Weidmuller offers components and solutions from data acquisition, data pre-processing, data communication and data analysis.

Visit Weidmuller’s Industrial IoT Portfolio.


ADVANCED Motion Controls Takes Servo Drives to New Heights (and Depths) with FlexPro Extended Environment Product Line

Advanced Motion Controls is proud to announce the addition of six new CANopen servo drives with Extended Environment capabilities to their FlexPro line. These new drives join AMC’s existing EtherCAT Extended Environment FlexPro drives, making the FlexPro line the go-to solution for motion control applications in harsh environments.

Many motion control applications take place in conditions that are less than ideal, such as extreme temperatures, high and low pressures, shocks and vibrations, and contamination. Electronics, including servo drives, can malfunction or sustain permanent damage in these conditions.

Read More


Service Wire Co. Announces New Titles for Key Executives

Bruce Kesler and Mark Gatewood have been given new titles and responsibilities for Service Wire Co.

Bruce Kesler has assumed the role of Senior Director – Business Development. Bruce will be responsible for Service Wire’s largest strategic accounts and our growing Strategic Accounts Team.

Mark Gatewood has been promoted to the role of Vice President – Sales & Marketing. In this role, Gatewood will lead the efforts of Service Wire Company’s entire sales and marketing organization in all market verticals.

Read More


Tri-Mach Announces the Purchase of an Additional 45,000 sq ft. Facility

Tri-Mach Elmira Facility

Recently, Tri-Mach Inc. was thrilled to announce the addition of a new 45,000 sq ft. facility. Located at 285 Union St., Elmira, ON, this facility expands Tri-Mach’s capabilities, allowing them to better serve the growing needs of their customers.

Positioning for growth, this additional facility will allow Tri-Mach to continue taking on large-scale projects, enhance product performance testing, and provide equipment storage for their customers. The building will also be the new home to their Skilled Trades Centre of Excellence.

Read More


JMP Parent Company, CONVERGIX Acquires AGR Automation, Expanding Global Reach

Convergix Automation Solutions has completed the acquisition of AGR Automation (“AGR”), a UK-based provider of custom, high-performance automation design and systems integration primarily to the life sciences industry.

Following Convergix’s acquisitions of JMP Solutions in August 2021 and Classic Design in February 2022, AGR marks the third investment in Crestview’s strategy to build Convergix into a diversified automation solutions provider targeting the global $500+ billion market, with a particular focus on the $70 billion global systems integration and connectivity segments. Financial terms of the transaction were not disclosed.

Read More


Latest Articles

  • Implementing Functional Safety Requirements

    Implementing Functional Safety Requirements

    The Safety Functional Requirements Specification (SFRS; sometimes referred to as SRS or Safety Requirements Specification) is the plan for the safety controls on a machine and is the second step of the safety lifecycle. The SFRS document serves as a framework for the safety control system design, is informed by prior work done in the… Read More…

  • From Endress+Hauser, 24/7 Digital, Plant-Wide Health Monitoring for Rockwell Systems Optimizes Workflows and Processes

    From Endress+Hauser, 24/7 Digital, Plant-Wide Health Monitoring for Rockwell Systems Optimizes Workflows and Processes

    Endress+Hauser’s Asset Health Monitoring Solution–Rockwell Edition, now available for installation, provides operators with a centralized, digital overview of plant-wide device health to avoid unscheduled shutdowns and accelerate troubleshooting. It not only presents early visibility of problematic devices but distinguishes itself by adding likely causes and remedies to such a report so problems can be fixed… Read More…